recent
أخبار ساخنة

Aerodynamics for Engineering Students 5th Edition by E. L. Houghton, P. W. Carpenter

Home

Aerodynamics for Engineering Students 5th Edition by E. L. Houghton, P. W. Carpenter.

Aerodynamics for Engineering Students 5th Edition by E. L. Houghton, P. W. Carpenter

This volume is intended for students of engineering on courses or programmes of study to graduate level. The sequence of subject development in this edition commences with definitions and concepts and goes on to cover incompressible flow, low speed aerofoil and wing theory, compressible flow, high speed wing theory, viscous flow, boundary layers, transition and turbulence, wing design, propellers and propulsion.

 Accordingly the work deals first with the units, dimensions and properties of the physical quantities used in aerodynamics then introduces common aeronautical definitions before explaining the aerodynamic forces involved and the basics of aerofoil characteristics. The fundamental fluid dynamics required for the development of aerodynamics and the analysis of flows within and around solid boundaries for air at subsonic speeds is explored in depth in the next two chapters, which continue with those immediately following to use these and other methods to develop aerofoil and wing theories for the estimation of aerodynamic characteristics in these regimes. Attention is then turned to the aerodynamics of high speed air flows. The laws governing the behaviour of the physical properties of air are applied to the transonic and supersonic regimes and the aerodynamics of the abrupt changes in the flow characteristics at these speeds are explained. The exploitation of these and other theories is then used to explain the significant effects on wings in transonic and supersonic flight respectively, and to develop appropriate aerodynamic characteristics.

Viscosity is a key physical quantity of air and its significance in aerodynamic situations is next considered in depth. The useful concept of the boundary layer and the development of properties of various flows when adjacent to solid boundaries, build to a body of reliable methods for estimating the fluid forces due to viscosity and notably, in aerodynamics, of skin friction and profile drag. 

Finally the two chapters on wing design and flow control, and propellers and propulsion respectively, bring together disparate aspects of the previous chapters as appropriate, to some practical and individual applications of aerodynamics. It is recognized that aerodynamic design makes extensive use of computational aids. This is reflected in part in this volume by the introduction, where appropriate, of descriptions and discussions of relevant computational techniques. However, no comprehensive cover of computational methods is intended, and experience in computational techniques is not required for a complete understanding of the aerodynamics in this book. Equally, although experimental data have been quoted no attempt has been made to describe techniques or apparatus, as we feel that experimental aerodynamics demands its own considered and separate treatment.

We are indebted to the Senates of the Universities and other institutions referred to within for kindly giving permission for the use of past examination questions. Any answers and worked examples are the responsibility of the authors, and the authorities referred to are in no way committed to approval of such answers and examples. This preface would be incomplete without reference to the many authors of classical and popular texts and of learned papers, whose works have formed the framework and guided the acquisitions of our own knowledge. A selection of these is given in the bibliography if not referred to in the text and we apologize if due recognition of a source has been inadvertently omitted in any particular in this volume.

You May Also Like:


google-playkhamsatmostaqltradent