recent engineering pdf

Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design pdf download

Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design pdf.

Modern electric, hybrid electric, and fuel cell vehicles

Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design.

The development of automobiles with heat engines is one of the greatest achievements of modern technology. However, the highly developed automotive industry and the large number of automobiles in use around the world have caused and are still causing serious problems for society and human life. Deterioration in air quality, global warming, and a decrease in petroleum resources are becoming the major threats to human beings. More and more stringent emissions and fuel consumption regulations are stimulating an interest in the development of safe, clean, and high-efficiency transportation. It has been well recognized that electric, hybrid electric, and fuel cell-powered drive train technologies are the most promising solutions to the problem of land transportation in the future. 

To meet the revolutionary challenge, an increasing number of North American and other engineering schools have started the academic discipline of advanced vehicle technologies in both undergraduate and graduate programs. In 1998, the principal author of this book shared his first lecture on “Advanced Vehicle Technologies — Design Methodology of Electric and Hybrid Electric Vehicles” with graduate students in mechanical and electrical engineering at Texas A&M University. While preparing the lecture, it was found that although there is a wealth of information in technical papers and reports, there is as yet no comprehensive and integrated textbook or reference for students. Furthermore, practicing engineers also need a systematically integrated reference to understand the essentials of this new technology. This book aims to fill this gap. 

The book deals with the fundamentals, theory, and design of conventional cars with internal combustion engines (ICEs), electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). It comprehensively presents vehicle performance, configuration, control strategy, design methodology, modeling, and simulation for different conventional and modern vehicles based on mathematical equations. 

This book includes vehicle system analysis, ICE-based drive trains, EV design, HEV configurations, electric propulsion systems, series/parallel/mild hybrid electric drive train design methodologies, energy storage systems, regenerative braking, fuel cells and their applications in vehicles, and fuel cell hybrid electric drive train design. It emphasizes the overall drive train system and not just specific components. The design methodology is described by step-by-step mathematical equations. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results.

The material in this book is recommended for a graduate or senior-level undergraduate course. Depending on the background of the students in different disciplines such as mechanical and electrical engineering, course instructors have the flexibility to choose the material or skip the introductory sections/chapters from the book for their lectures. This text has been taught at Texas A&M University as a graduate-level course. An earlier version of this text has been revised several times based on the comments and feedback received from the students in this course.

Download Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design in free pdf fromat.